# Author: Theo Gnassounou <theo.gnassounou@inria.fr>
# Remi Flamary <remi.flamary@polytechnique.edu>
# Oleksii Kachaiev <kachayev@gmail.com>
# Yanis Lalou <yanis.lalou@polytechnique.edu>
#
# License: BSD 3-Clause
from abc import ABCMeta, abstractmethod
from functools import reduce
import numpy as np
from sklearn.model_selection._split import (
_build_repr,
_num_samples,
_validate_shuffle_split,
)
from sklearn.utils import check_random_state, indexable
try:
from sklearn.utils import _approximate_mode
except ImportError:
# to handle changes introduced in sklearn 1.5
# see https://github.com/scikit-learn/scikit-learn/pull/28481
from sklearn.utils.extmath import _approximate_mode
from sklearn.utils.metadata_routing import _MetadataRequester
from sklearn.utils.validation import check_array
from .utils import check_X_domain, extract_domains_indices, extract_source_indices
class SplitSampleDomainRequesterMixin(_MetadataRequester):
"""Mixin for domain aware splitting that requires 'sample_domain' parameter."""
__metadata_request__split = {"sample_domain": True}
class BaseDomainAwareShuffleSplit(SplitSampleDomainRequesterMixin, metaclass=ABCMeta):
"""Base class for domain aware implementation of the
ShuffleSplit and StratifiedShuffleSplit.
"""
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
self.n_splits = n_splits
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self._default_test_size = 0.1
def split(self, X, y=None, sample_domain=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
sample_domain : array-like of shape (n_samples,), default=None
Domain labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
# automatically derive sample_domain if it is not provided
X, sample_domain = check_X_domain(
X,
sample_domain,
allow_auto_sample_domain=True,
allow_nd=True,
)
X, y, sample_domain = indexable(X, y, sample_domain)
yield from self._iter_indices(X, y, sample_domain=sample_domain)
@abstractmethod
def _iter_indices(self, X, y=None, sample_domain=None):
"""Generate (train, test) indices"""
def get_n_splits(self, X=None, y=None, sample_domain=None):
"""Returns the number of splitting iterations in the cross-validator
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return self.n_splits
def __repr__(self):
return _build_repr(self)
[docs]
class SourceTargetShuffleSplit(BaseDomainAwareShuffleSplit):
"""Source-Target-Shuffle-Split cross-validator.
Provides train/test indices to split data in train/test sets.
Each sample is used once as a test set (singleton) while the
remaining samples form the training set.
Default split is implemented hierarchically. If first designates
a single domain as a target followed up by the single train/test
shuffle split.
"""
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
super().__init__(
n_splits=n_splits,
test_size=test_size,
train_size=train_size,
random_state=random_state,
)
self._default_test_size = 0.1
def _iter_indices(self, X, y=None, sample_domain=None):
X, sample_domain = check_X_domain(X, sample_domain, allow_nd=True)
indices = extract_source_indices(sample_domain)
(source_idx,) = np.where(indices)
(target_idx,) = np.where(~indices)
n_source_samples = _num_samples(source_idx)
n_source_train, n_source_test = _validate_shuffle_split(
n_source_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
n_target_samples = _num_samples(target_idx)
n_target_train, n_target_test = _validate_shuffle_split(
n_target_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
rng = check_random_state(self.random_state)
for i in range(self.n_splits):
# random partition
source_permutation = source_idx[rng.permutation(n_source_samples)]
ind_source_train = source_permutation[
n_source_test : (n_source_test + n_source_train)
]
ind_source_test = source_permutation[:n_source_test]
target_permutation = target_idx[rng.permutation(n_target_samples)]
ind_target_train = target_permutation[
n_target_test : (n_target_test + n_target_train)
]
ind_target_test = target_permutation[:n_target_test]
yield (
np.concatenate([ind_source_train, ind_target_train]),
np.concatenate([ind_source_test, ind_target_test]),
)
[docs]
class LeaveOneDomainOut(SplitSampleDomainRequesterMixin):
"""Leave-One-Domain-Out cross-validator.
Provides train/test indices to split data in train/test sets.
"""
def __init__(
self, max_n_splits=10, *, test_size=None, train_size=None, random_state=None
):
self.max_n_splits = max_n_splits
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self._default_test_size = 0.1
# so we can reuse existing implementation for shuffle split
self._n_splits = 1
[docs]
def split(self, X, y=None, sample_domain=None):
"""Generate indices to split data into training and test set.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
The target variable for supervised learning problems.
sample_domain : array-like of shape (n_samples,), default=None
Domain labels for the samples used while splitting the dataset into
train/test set.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
Notes
-----
Randomized CV splitters may return different results for each call of
split. You can make the results identical by setting `random_state`
to an integer.
"""
# automatically derive sample_domain if it is not provided
X, sample_domain = check_X_domain(
X,
sample_domain,
allow_auto_sample_domain=True,
allow_nd=True,
)
X, y, sample_domain = indexable(X, y, sample_domain)
# xxx(okachaiev): make sure all domains are given both as sources and targets
domains = self._get_domain_labels(sample_domain)
n_domains = domains.shape[0]
rng = check_random_state(self.random_state)
domain_idx = rng.permutation(n_domains)
if n_domains > self.max_n_splits:
domain_idx = domain_idx[: self.max_n_splits]
for target_domain_idx in domain_idx:
target_domain = domains[target_domain_idx]
split_idx = reduce(
np.logical_or,
(
sample_domain == (domain if domain != target_domain else -domain)
for domain in domains
),
)
(split_idx,) = np.where(split_idx)
X_split = X[split_idx]
split_sample_domain = sample_domain[split_idx]
for train_idx, test_idx in self._iter_indices(
X_split, y=None, sample_domain=split_sample_domain
):
yield split_idx[train_idx], split_idx[test_idx]
def _iter_indices(self, X, y=None, sample_domain=None):
X, sample_domain = check_X_domain(X, sample_domain, allow_nd=True)
indices = extract_source_indices(sample_domain)
(source_idx,) = np.where(indices)
(target_idx,) = np.where(~indices)
n_source_samples = _num_samples(source_idx)
n_source_train, n_source_test = _validate_shuffle_split(
n_source_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
n_target_samples = _num_samples(target_idx)
n_target_train, n_target_test = _validate_shuffle_split(
n_target_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
rng = check_random_state(self.random_state)
for i in range(self._n_splits):
# random partition
source_permutation = source_idx[rng.permutation(n_source_samples)]
ind_source_train = source_permutation[
n_source_test : (n_source_test + n_source_train)
]
ind_source_test = source_permutation[:n_source_test]
target_permutation = target_idx[rng.permutation(n_target_samples)]
ind_target_train = target_permutation[
n_target_test : (n_target_test + n_target_train)
]
ind_target_test = target_permutation[:n_target_test]
yield (
np.concatenate([ind_source_train, ind_target_train]),
np.concatenate([ind_source_test, ind_target_test]),
)
def _get_domain_labels(self, sample_domain: np.ndarray) -> np.ndarray:
return np.unique(sample_domain[sample_domain >= 0])
[docs]
def get_n_splits(self, X=None, y=None, sample_domain=None):
"""Returns the number of splitting iterations in the cross-validator
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
sample_domain : np.ndarray
Per-sample domain labels.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
domains = self._get_domain_labels(sample_domain)
n_splits = domains.shape[0]
return min(self.max_n_splits, n_splits)
def __repr__(self):
return _build_repr(self)
[docs]
class StratifiedDomainShuffleSplit(BaseDomainAwareShuffleSplit):
"""Stratified-Domain-Shuffle-Split cross-validator.
This cross-validation object returns stratified randomized folds.
The folds are made by preserving the percentage of samples
for each class and for each sample domain.
Parameters
----------
n_splits : int, default=10
Number of folds. Must be at least 2.
Examples
--------
>>> import numpy as np
>>> from skada.model_selection import StratifiedDomainShuffleSplit
>>> X = np.ones((10, 2))
>>> y = np.array([-1, 0, 1, -1, 0, 1, -1, 0, 1, -1])
>>> sample_domain = np.array([-2, 1, 1, -2, 1, 1, -2, 1, 1, -2])
>>> da_shufflesplit = StratifiedDomainShuffleSplit(n_splits=2,
... random_state=0, test_size=0.5)
>>> da_shufflesplit.get_n_splits(X, y, sample_domain)
2
>>> print(da_shufflesplit)
StratifiedDomainShuffleSplit(n_splits=2, random_state=0,
test_size=0.5, train_size=None)
>>> for i, (train_index, test_index) in enumerate(
... da_shufflesplit.split(X, y, sample_domain)
... ):
... print(f"Fold {i}:")
... print(f" Train: index={train_index}, "
... f'''group={[[b.item(), a.item()]
... for a, b in zip(y[train_index], sample_domain[train_index])
... ]}''')
... print(f" Test: index={test_index}, "
... f'''group={[[b.item(), a.item()]
... for a, b in zip(y[test_index], sample_domain[test_index])
... ]}''')
Fold 0:
Train: index=[0 6 1 8 2], group=[[-2, -1], [-2, -1], [1, 0], [1, 1], [1, 1]]
Test: index=[4 9 7 5 3], group=[[1, 0], [-2, -1], [1, 0], [1, 1], [-2, -1]]
Fold 1:
Train: index=[1 2 8 0 3], group=[[1, 0], [1, 1], [1, 1], [-2, -1], [-2, -1]]
Test: index=[7 5 9 4 6], group=[[1, 0], [1, 1], [-2, -1], [1, 0], [-2, -1]]
"""
def __init__(
self, n_splits=10, *, test_size=None, train_size=None, random_state=None
):
self.n_splits = n_splits
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self._default_test_size = 0.1
def _iter_indices(self, X, y, sample_domain=None):
# Original code from scikit-learn: https://github.com/scikit-learn/scikit-learn
# Modified to have output folds made while
# preserving the labels AND sample_domain
# percentages of samples
# License: BSD
X, sample_domain = check_X_domain(
X,
sample_domain,
allow_auto_sample_domain=True,
allow_nd=True,
)
X, y, sample_domain = indexable(X, y, sample_domain)
n_samples = _num_samples(X)
y = check_array(y, input_name="y", ensure_2d=False, dtype=None)
n_train, n_test = _validate_shuffle_split(
n_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
if y.ndim == 2:
# for multi-label y, map each distinct row to a string repr
# using join because str(row) uses an ellipsis if len(row) > 1000
y = np.array([" ".join(row.astype("str")) for row in y])
# Stack y and sample_domain to have sample groups
groups_array = np.stack((y, sample_domain), axis=-1)
groups, group_indices = np.unique(groups_array, return_inverse=True, axis=0)
n_groups = groups.shape[0]
group_indices = group_indices.flatten()
group_counts = np.bincount(group_indices)
if np.min(group_counts) < 2:
raise ValueError(
"The least populated group has only 1"
" member, which is too few. The minimum"
" number of samples for any group cannot"
" be less than 2."
)
if n_train < n_groups:
raise ValueError(
"The train_size = %d should be greater or "
"equal to the number of groups = %d" % (n_train, n_groups)
)
if n_test < n_groups:
raise ValueError(
"The test_size = %d should be greater or "
"equal to the number of groups = %d" % (n_test, n_groups)
)
# Find the sorted list of instances for each class:
# (np.unique above performs a sort, so code is O(n logn) already)
group_indices = np.split(
np.argsort(group_indices, kind="mergesort"), np.cumsum(group_counts)[:-1]
)
rng = check_random_state(self.random_state)
for _ in range(self.n_splits):
# if there are ties in the class-counts, we want
# to make sure to break them anew in each iteration
n_i = _approximate_mode(group_counts, n_train, rng)
class_counts_remaining = group_counts - n_i
t_i = _approximate_mode(class_counts_remaining, n_test, rng)
train = []
test = []
for i in range(n_groups):
permutation = rng.permutation(group_counts[i])
perm_indices_group_i = group_indices[i].take(permutation, mode="clip")
train.extend(perm_indices_group_i[: n_i[i]])
test.extend(perm_indices_group_i[n_i[i] : n_i[i] + t_i[i]])
train = rng.permutation(train)
test = rng.permutation(test)
yield train, test
[docs]
def split(self, X, y, sample_domain=None):
"""XXX: Docstring here"""
return super().split(X, y, sample_domain)
[docs]
class DomainShuffleSplit(BaseDomainAwareShuffleSplit):
"""Domain-Shuffle-Split cross-validator.
Provides randomized train/test indices to split data depending
on their sample_domain.
Each fold is composed of samples coming from both source and target
domains.
The folds are made by preserving the percentage of samples for
each sample domain.
Parameters
----------
n_splits : int, default=10
Number of re-shuffling & splitting iterations.
test_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If train_size is also None, it will be
set to 0.1.
train_size : float or int, default=None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If int,
represents the absolute number of train samples. If None, the value
is automatically set to the complement of the test size.
random_state : int or RandomState instance, default=None
Controls the randomness of the training and testing indices produced.
Examples
--------
>>> import numpy as np
>>> from skada.model_selection import DomainShuffleSplit
>>> X = np.ones((10, 2))
>>> y = np.ones((10, 1))
>>> sample_domain = np.array([1, -2, 1, -2, 1, -2, 1, -2, 1, -2])
>>> rsdas = DomainShuffleSplit(
... n_splits=3,
... random_state=0,
... test_size=0.1,
... )
>>> for train_index, test_index in rsdas.split(X, y, sample_domain):
... print("TRAIN:", train_index, "TEST:", test_index)
TRAIN: [4 2 0 1 3 9] TEST: [6 5]
TRAIN: [8 6 2 5 3 9] TEST: [4 7]
TRAIN: [8 2 6 3 1 9] TEST: [4 5]
"""
def __init__(
self,
n_splits=10,
*,
test_size=None,
train_size=None,
random_state=None,
under_sampling=0.8,
):
super().__init__(
n_splits=n_splits,
test_size=test_size,
train_size=train_size,
random_state=random_state,
)
self.random_state = random_state
self.under_sampling = under_sampling
if not (0 <= under_sampling <= 1):
raise ValueError("under_sampling should be between 0 and 1")
def _iter_indices(self, X, y=None, sample_domain=None):
X, sample_domain = check_X_domain(X, sample_domain, allow_nd=True)
domain_source_idx_dict, domain_target_idx_dict = extract_domains_indices(
sample_domain, split_source_target=True
)
rng = check_random_state(self.random_state)
for _ in range(self.n_splits):
source_idx = np.concatenate(
[
rng.choice(v, int(len(v) * self.under_sampling), replace=False)
for v in domain_source_idx_dict.values()
]
)
target_idx = np.concatenate(
[
rng.choice(v, int(len(v) * self.under_sampling), replace=False)
for v in domain_target_idx_dict.values()
]
)
rng.shuffle(source_idx)
rng.shuffle(target_idx)
n_source_samples = _num_samples(source_idx)
n_source_train, n_source_test = _validate_shuffle_split(
n_source_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
n_target_samples = _num_samples(target_idx)
n_target_train, n_target_test = _validate_shuffle_split(
n_target_samples,
self.test_size,
self.train_size,
default_test_size=self._default_test_size,
)
ind_source_train = source_idx[
n_source_test : (n_source_test + n_source_train)
]
ind_source_test = source_idx[:n_source_test]
ind_target_train = target_idx[
n_target_test : (n_target_test + n_target_train)
]
ind_target_test = target_idx[:n_target_test]
yield (
np.concatenate([ind_source_train, ind_target_train]),
np.concatenate([ind_source_test, ind_target_test]),
)