skada.OTLabelProp

skada.OTLabelProp(base_estimator=None, reg=0, metric='sqeuclidean', n_iter_max=200)[source]

Label propagation using optimal transport plan.

This adapter uses the optimal transport plan to propagate labels from source to target domain. This was proposed originally in [28] for semi-supervised learning and can be used for domain adaptation.

Parameters:
base_estimatorobject

The base estimator to be used for the classification task. This estimator should optimize a classification loss corresponding to the given metric and provide compatible predict method (decision_function of predict_proba).

regfloat, default=0

The entropic regularization parameter for the optimal transport problem. If None, the exact OT is solved, else it is used to weight the entropy regularizationof the coupling matrix.

metricstr, default='sqeuclidean'

The metric to use for the cost matrix. Can be 'sqeuclidean' for squared euclidean distance, 'euclidean' for euclidean distance,

n_iter_max: int

Maximum number of iterations for the OT solver.

Returns:
adapterOTLabelPropAdapter

The optimal transport label propagation adapter.

References

[28] Solomon, J., Rustamov, R., Guibas, L., & Butscher, A. (2014, January).

Wasserstein propagation for semi-supervised learning. In International Conference on Machine Learning (pp. 306-314). PMLR.

Examples using skada.OTLabelProp

Comparison of DA classification methods

Comparison of DA classification methods