skada.deep.DAN
- skada.deep.DAN(module, layer_name, reg=1, sigmas=None, base_criterion=None, **kwargs)[source]
DAN domain adaptation method.
See [14].
- Parameters:
- moduletorch module (class or instance)
A PyTorch
Module
.- layer_namestr
The name of the module's layer whose outputs are collected during the training for the adaptation.
- regfloat, optional (default=1)
Regularization parameter for DA loss.
- sigmasarray-like, optional (default=None)
The sigmas for the Gaussian kernel.
- base_criteriontorch criterion (class)
The base criterion used to compute the loss with source labels. If None, the default is torch.nn.CrossEntropyLoss.
References
[14]Mingsheng Long et. al. Learning Transferable Features with Deep Adaptation Networks. In ICML, 2015.