skada.deep.SPALoss
- class skada.deep.SPALoss(max_epochs, domain_criterion=None, memory_features=None, memory_outputs=None, K=5, reg_adv=1, reg_gsa=1, reg_nap=1)[source]
Loss SPA.
This loss tries to minimize the divergence between features with adversarial method. The weights are updated to make harder to classify domains (i.e., remove domain-specific features).
See [36] for details.
- Parameters:
- max_epochsint
Maximum number of epochs to train the model.
- target_criteriontorch criterion (class), default=None
The initialized criterion (loss) used to compute the adversarial loss. If None, a BCELoss is used.
- reg_advfloat, default=1
Regularization parameter for adversarial loss.
- reg_gsafloat, default=1
Regularization parameter for graph alignment loss
- reg_napfloat, default=1
Regularization parameter for nap loss
References
[36]Xiao et. al. SPA: A Graph Spectral Alignment Perspective for Domain Adaptation. In Neurips, 2023.