Note
Go to the end to download the full example code.
Divergence domain adaptation methods.
This example illustrates the DeepCoral method from [1] on a simple image classification task.
# Author: Théo Gnassounou
#
# License: BSD 3-Clause
# sphinx_gallery_thumbnail_number = 4
from skorch import NeuralNetClassifier
from torch import nn
from skada.datasets import load_mnist_usps
from skada.deep import DeepCoral
from skada.deep.modules import MNISTtoUSPSNet
Load the image datasets
dataset = load_mnist_usps(n_classes=2, n_samples=0.5, return_dataset=True)
X, y, sample_domain = dataset.pack(
as_sources=["mnist"], as_targets=["usps"], mask_target_labels=True
)
X_test, y_test, sample_domain_test = dataset.pack(
as_sources=[], as_targets=["usps"], mask_target_labels=False
)
0%| | 0.00/9.91M [00:00<?, ?B/s]
100%|██████████| 9.91M/9.91M [00:00<00:00, 133MB/s]
0%| | 0.00/28.9k [00:00<?, ?B/s]
100%|██████████| 28.9k/28.9k [00:00<00:00, 65.3MB/s]
0%| | 0.00/1.65M [00:00<?, ?B/s]
100%|██████████| 1.65M/1.65M [00:00<00:00, 59.5MB/s]
0%| | 0.00/4.54k [00:00<?, ?B/s]
100%|██████████| 4.54k/4.54k [00:00<00:00, 10.0MB/s]
/home/circleci/project/skada/datasets/_mnist_usps.py:72: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() or sourceTensor.detach().clone().requires_grad_(True), rather than torch.tensor(sourceTensor).
mnist_target = torch.tensor(mnist_dataset.targets)
0%| | 0.00/1.83M [00:00<?, ?B/s]
2%|▏ | 32.8k/1.83M [00:00<00:12, 142kB/s]
4%|▎ | 65.5k/1.83M [00:00<00:12, 142kB/s]
5%|▌ | 98.3k/1.83M [00:00<00:12, 142kB/s]
13%|█▎ | 229k/1.83M [00:00<00:05, 308kB/s]
21%|██▏ | 393k/1.83M [00:01<00:03, 449kB/s]
39%|███▉ | 721k/1.83M [00:01<00:01, 776kB/s]
77%|███████▋ | 1.41M/1.83M [00:01<00:00, 1.48MB/s]
100%|██████████| 1.83M/1.83M [00:01<00:00, 1.11MB/s]
Train a classic model
model = NeuralNetClassifier(
MNISTtoUSPSNet(),
criterion=nn.CrossEntropyLoss(),
batch_size=128,
max_epochs=5,
train_split=False,
lr=1e-2,
)
model.fit(X[sample_domain > 0], y[sample_domain > 0])
model.score(X_test, y=y_test)
epoch train_loss dur
------- ------------ -------
1 1.6884 12.7046
2 0.3133 8.0979
3 0.1007 6.6415
4 0.0520 6.0021
5 0.0370 5.9950
0.9260450160771704
Train a DeepCoral model
model = DeepCoral(
MNISTtoUSPSNet(),
layer_name="fc1",
batch_size=128,
max_epochs=5,
train_split=False,
reg=1,
lr=1e-2,
)
model.fit(X, y, sample_domain=sample_domain)
model.score(X_test, y_test, sample_domain=sample_domain_test)
epoch train_loss dur
------- ------------ ------
1 1.6431 9.5111
2 0.3926 7.5020
3 0.1329 7.0979
4 0.0715 7.7970
5 0.0619 7.5018
0.8906752411575563
Total running time of the script: (1 minutes 29.865 seconds)