Note
Go to the end to download the full example code.
Divergence domain adaptation methods.
This example illustrates the DeepCoral method from [1] on a simple image classification task.
# Author: Théo Gnassounou
#
# License: BSD 3-Clause
# sphinx_gallery_thumbnail_number = 4
from skorch import NeuralNetClassifier
from torch import nn
from skada.datasets import load_mnist_usps
from skada.deep import DeepCoral
from skada.deep.modules import MNISTtoUSPSNet
Load the image datasets
dataset = load_mnist_usps(n_classes=2, n_samples=0.5, return_dataset=True)
X, y, sample_domain = dataset.pack_train(as_sources=["mnist"], as_targets=["usps"])
X_test, y_test, sample_domain_test = dataset.pack_test(as_targets=["usps"])
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-images-idx3-ubyte.gz to ./datasets/MNIST/raw/train-images-idx3-ubyte.gz
0%| | 0.00/9.91M [00:00<?, ?B/s]
100%|██████████| 9.91M/9.91M [00:00<00:00, 130MB/s]
Extracting ./datasets/MNIST/raw/train-images-idx3-ubyte.gz to ./datasets/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/train-labels-idx1-ubyte.gz to ./datasets/MNIST/raw/train-labels-idx1-ubyte.gz
0%| | 0.00/28.9k [00:00<?, ?B/s]
100%|██████████| 28.9k/28.9k [00:00<00:00, 28.8MB/s]
Extracting ./datasets/MNIST/raw/train-labels-idx1-ubyte.gz to ./datasets/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz to ./datasets/MNIST/raw/t10k-images-idx3-ubyte.gz
0%| | 0.00/1.65M [00:00<?, ?B/s]
100%|██████████| 1.65M/1.65M [00:00<00:00, 236MB/s]
Extracting ./datasets/MNIST/raw/t10k-images-idx3-ubyte.gz to ./datasets/MNIST/raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Failed to download (trying next):
HTTP Error 403: Forbidden
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz
Downloading https://ossci-datasets.s3.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz to ./datasets/MNIST/raw/t10k-labels-idx1-ubyte.gz
0%| | 0.00/4.54k [00:00<?, ?B/s]
100%|██████████| 4.54k/4.54k [00:00<00:00, 14.7MB/s]
Extracting ./datasets/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./datasets/MNIST/raw
/home/circleci/project/skada/datasets/_mnist_usps.py:72: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
mnist_target = torch.tensor(mnist_dataset.targets)
Downloading https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/usps.t.bz2 to ./datasets/usps.t.bz2
0%| | 0.00/1.83M [00:00<?, ?B/s]
2%|▏ | 32.8k/1.83M [00:00<00:11, 154kB/s]
4%|▎ | 65.5k/1.83M [00:00<00:11, 154kB/s]
7%|▋ | 131k/1.83M [00:00<00:07, 224kB/s]
13%|█▎ | 229k/1.83M [00:00<00:05, 318kB/s]
25%|██▌ | 459k/1.83M [00:01<00:02, 590kB/s]
45%|████▍ | 819k/1.83M [00:01<00:01, 954kB/s]
91%|█████████ | 1.67M/1.83M [00:01<00:00, 1.96MB/s]
100%|██████████| 1.83M/1.83M [00:01<00:00, 1.23MB/s]
Train a classic model
model = NeuralNetClassifier(
MNISTtoUSPSNet(),
criterion=nn.CrossEntropyLoss(),
batch_size=128,
max_epochs=5,
train_split=False,
lr=1e-2,
)
model.fit(X[sample_domain > 0], y[sample_domain > 0])
model.score(X_test, y=y_test)
epoch train_loss dur
------- ------------ ------
1 1.4748 2.9508
2 0.3692 2.7973
3 0.1471 2.7036
4 0.0838 2.5985
5 0.0558 2.5005
0.887459807073955
Train a DeepCoral model
model = DeepCoral(
MNISTtoUSPSNet(),
layer_name="fc1",
batch_size=128,
max_epochs=5,
train_split=False,
reg=1,
lr=1e-2,
)
model.fit(X, y, sample_domain=sample_domain)
model.score(X_test, y_test, sample_domain=sample_domain_test)
epoch train_loss dur
------- ------------ ------
1 1.5530 6.7772
2 0.2746 6.5688
3 0.1101 6.4290
4 0.0836 6.8994
5 0.0712 6.8981
0.8778135048231511
Total running time of the script: (0 minutes 55.438 seconds)