Note
Go to the end to download the full example code.
Divergence domain adaptation methods.
This example illustrates the DeepCoral method from [1] on a simple image classification task.
# Author: Théo Gnassounou
#
# License: BSD 3-Clause
# sphinx_gallery_thumbnail_number = 4
from skorch import NeuralNetClassifier
from torch import nn
from skada.datasets import load_mnist_usps
from skada.deep import DeepCoral
from skada.deep.modules import MNISTtoUSPSNet
Load the image datasets
dataset = load_mnist_usps(n_classes=2, n_samples=0.5, return_dataset=True)
X, y, sample_domain = dataset.pack(
as_sources=["mnist"], as_targets=["usps"], mask_target_labels=True
)
X_test, y_test, sample_domain_test = dataset.pack(
as_sources=[], as_targets=["usps"], mask_target_labels=False
)
0%| | 0.00/9.91M [00:00<?, ?B/s]
100%|██████████| 9.91M/9.91M [00:00<00:00, 129MB/s]
0%| | 0.00/28.9k [00:00<?, ?B/s]
100%|██████████| 28.9k/28.9k [00:00<00:00, 44.2MB/s]
0%| | 0.00/1.65M [00:00<?, ?B/s]
100%|██████████| 1.65M/1.65M [00:00<00:00, 97.4MB/s]
0%| | 0.00/4.54k [00:00<?, ?B/s]
100%|██████████| 4.54k/4.54k [00:00<00:00, 14.7MB/s]
/home/circleci/project/skada/datasets/_mnist_usps.py:72: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() or sourceTensor.detach().clone().requires_grad_(True), rather than torch.tensor(sourceTensor).
mnist_target = torch.tensor(mnist_dataset.targets)
0%| | 0.00/1.83M [00:00<?, ?B/s]
2%|▏ | 32.8k/1.83M [00:00<00:10, 167kB/s]
4%|▎ | 65.5k/1.83M [00:00<00:10, 167kB/s]
5%|▌ | 98.3k/1.83M [00:00<00:10, 167kB/s]
13%|█▎ | 229k/1.83M [00:00<00:04, 365kB/s]
23%|██▎ | 426k/1.83M [00:00<00:02, 595kB/s]
48%|████▊ | 885k/1.83M [00:01<00:00, 1.19MB/s]
97%|█████████▋| 1.77M/1.83M [00:01<00:00, 2.27MB/s]
100%|██████████| 1.83M/1.83M [00:01<00:00, 1.33MB/s]
Train a classic model
model = NeuralNetClassifier(
MNISTtoUSPSNet(),
criterion=nn.CrossEntropyLoss(),
batch_size=128,
max_epochs=5,
train_split=False,
lr=1e-2,
)
model.fit(X[sample_domain > 0], y[sample_domain > 0])
model.score(X_test, y=y_test)
epoch train_loss dur
------- ------------ ------
1 1.5367 5.1982
2 0.3111 4.7037
3 0.1083 4.8984
4 0.0588 4.8945
5 0.0408 5.1000
0.9163987138263665
Train a DeepCoral model
model = DeepCoral(
MNISTtoUSPSNet(),
layer_name="fc1",
batch_size=128,
max_epochs=5,
train_split=False,
reg=1,
lr=1e-2,
)
model.fit(X, y, sample_domain=sample_domain)
model.score(X_test, y_test, sample_domain=sample_domain_test)
/home/circleci/.local/lib/python3.10/site-packages/sklearn/utils/deprecation.py:132: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.
warnings.warn(
epoch train_loss dur
------- ------------ -------
1 1.6283 10.1582
2 0.3672 9.9996
3 0.1345 10.1960
4 0.0843 10.2018
5 0.0702 9.7004
/home/circleci/.local/lib/python3.10/site-packages/sklearn/utils/deprecation.py:132: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.
warnings.warn(
/home/circleci/.local/lib/python3.10/site-packages/sklearn/utils/deprecation.py:132: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.
warnings.warn(
/home/circleci/.local/lib/python3.10/site-packages/sklearn/utils/deprecation.py:132: FutureWarning: 'force_all_finite' was renamed to 'ensure_all_finite' in 1.6 and will be removed in 1.8.
warnings.warn(
0.909967845659164
Total running time of the script: (1 minutes 23.974 seconds)