Note
Go to the end to download the full example code.
Optimal transport domain adaptation methods.
This example illustrates the Optimal Transport deep DA method from on a simple image classification task.
# Author: Théo Gnassounou
#
# License: BSD 3-Clause
# sphinx_gallery_thumbnail_number = 4
from skorch import NeuralNetClassifier
from torch import nn
from skada.datasets import load_mnist_usps
from skada.deep import DeepJDOT
from skada.deep.modules import MNISTtoUSPSNet
Load the image datasets
dataset = load_mnist_usps(n_classes=2, n_samples=0.5, return_dataset=True)
X, y, sample_domain = dataset.pack(
as_sources=["mnist"], as_targets=["usps"], mask_target_labels=True
)
X_test, y_test, sample_domain_test = dataset.pack(
as_sources=[], as_targets=["usps"], mask_target_labels=False
)
/home/circleci/project/skada/datasets/_mnist_usps.py:72: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.detach().clone() or sourceTensor.detach().clone().requires_grad_(True), rather than torch.tensor(sourceTensor).
mnist_target = torch.tensor(mnist_dataset.targets)
Train a classic model
model = NeuralNetClassifier(
MNISTtoUSPSNet(),
criterion=nn.CrossEntropyLoss(),
batch_size=128,
max_epochs=5,
train_split=False,
lr=1e-2,
)
model.fit(X[sample_domain > 0], y[sample_domain > 0])
model.score(X_test, y=y_test)
epoch train_loss dur
------- ------------ ------
1 1.3357 4.0835
2 0.2391 3.8207
3 0.0981 3.9994
4 0.0610 4.1947
5 0.0411 4.2050
0.9228295819935691
Train a DeepJDOT model
model = DeepJDOT(
MNISTtoUSPSNet(),
layer_name="fc1",
batch_size=128,
max_epochs=5,
train_split=False,
reg_dist=0.1,
reg_cl=0.01,
lr=1e-2,
)
model.fit(X, y, sample_domain=sample_domain)
model.score(X_test, y_test, sample_domain=sample_domain_test)
epoch train_loss dur
------- ------------ ------
1 1.9560 9.4615
2 1.1528 9.6989
3 0.7631 9.6013
4 0.6101 9.6993
5 0.5132 9.7004
0.9646302250803859
Total running time of the script: (1 minutes 12.426 seconds)