skada.model_selection.LeaveOneDomainOut
- class skada.model_selection.LeaveOneDomainOut(max_n_splits=10, *, test_size=None, train_size=None, random_state=None)[source]
Leave-One-Domain-Out cross-validator.
Provides train/test indices to split data in train/test sets.
- get_n_splits(X=None, y=None, sample_domain=None)[source]
Returns the number of splitting iterations in the cross-validator
- Parameters:
- Xobject
Always ignored, exists for compatibility.
- yobject
Always ignored, exists for compatibility.
- sample_domainnp.ndarray
Per-sample domain labels.
- Returns:
- n_splitsint
Returns the number of splitting iterations in the cross-validator.
- set_split_request(*, sample_domain: bool | None | str = '$UNCHANGED$') LeaveOneDomainOut
Request metadata passed to the
split
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tosplit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tosplit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter insplit
.
- Returns:
- selfobject
The updated object.
- split(X, y=None, sample_domain=None)[source]
Generate indices to split data into training and test set.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Training data, where n_samples is the number of samples and n_features is the number of features.
- yarray-like of shape (n_samples,)
The target variable for supervised learning problems.
- sample_domainarray-like of shape (n_samples,), default=None
Domain labels for the samples used while splitting the dataset into train/test set.
- Yields:
- trainndarray
The training set indices for that split.
- testndarray
The testing set indices for that split.
Notes
Randomized CV splitters may return different results for each call of split. You can make the results identical by setting random_state to an integer.
Examples using skada.model_selection.LeaveOneDomainOut
Visualizing cross-validation behavior in skada