SKADA logo generation

In this example we plot the logos of the SKADA toolbox.

This logo is that it is done 100% in Python and generated using matplotlib and plotting the solution of the EMD solver from POT.

# Author: Théo Gnassounou
#
# License: BSD 3-Clause
# sphinx_gallery_thumbnail_number = 1
from math import factorial

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams.update({"text.usetex": True, "font.family": "Computer Modern"})

color_S = "black"
color_1 = "#2364aa"
color_0 = "#c84630"
color_unlabel = "#999c81"


def comb(n, k):
    return factorial(n) // (factorial(k) * factorial(n - k))


def bezier_curve(t, points):
    n = len(points) - 1
    return sum(comb(n, i) * (1 - t) ** (n - i) * t**i * points[i] for i in range(n + 1))


def draw_S(
    start_length=9,
    length_step=2.5,
    final_angle=70,
    angle_step=18,
    s=30,
    alpha=0.9,
    linewidths=1,
    random_state=42,
    figsize=(2, 2),
    white=False,
):
    rng = np.random.RandomState(random_state)

    # Create a figure and axis
    fig = plt.figure(1, figsize)
    if figsize == (2, 2):
        plt.xlim(-1, 11)
    else:
        plt.xlim(-1, 35)

    # Define the control points for the Bézier curve
    points = np.array([[2, 8], [4, 10], [6, 0], [8, 2]])

    # Generate the S shape
    t_values = np.linspace(-0.3, 1.3, 100)
    curve = np.array([bezier_curve(t, points) for t in t_values])

    for i, angle in enumerate(range(0, final_angle, angle_step)):
        rotation_center = np.mean(curve, axis=0)
        rotation_angle = np.radians(angle)
        rotation_matrix = np.array(
            [
                [np.cos(rotation_angle), -np.sin(rotation_angle)],
                [np.sin(rotation_angle), np.cos(rotation_angle)],
            ]
        )
        rotated_curve = (
            np.dot(curve - rotation_center, rotation_matrix) + rotation_center
        )

        # Plot the S shape
        plt.plot(
            rotated_curve[:, 1],
            rotated_curve[:, 0],
            color=color_S if not white else "w",
            linewidth=start_length - length_step * i,
            alpha=1 - i / (final_angle / angle_step),
            solid_capstyle="round",
        )

    # Plot the S shape
    plt.plot(
        curve[:, 1],
        curve[:, 0],
        color=color_S if not white else "w",
        linewidth=2,
        solid_capstyle="round",
    )
    n_dots = 200
    max = 2
    min = 1
    dots = rng.rand(n_dots, 2) * 10
    dots_class = []
    dots_keep = []
    for i, dot in enumerate(dots):
        # get the closest x axis point of the curve of dot
        closest_point = curve[np.argmin(np.abs(curve[:, 0] - dot[0]))]
        if (abs(closest_point[1] - dot[1]) < max) & (
            abs(closest_point[1] - dot[1]) > min
        ):
            dots_keep.append(dot)
            if closest_point[1] > dot[1]:
                dots_class.append(1)
            else:
                dots_class.append(0)

    dots_keep = np.array(dots_keep)
    dots_class = np.array(dots_class)

    plt.scatter(
        dots_keep[dots_class == 0, 1],
        dots_keep[dots_class == 0, 0],
        color=color_unlabel if not white else "w",
        marker="o",
        s=s,
        alpha=alpha,
        linewidths=linewidths,
    )

    plt.scatter(
        dots_keep[dots_class == 1, 1],
        dots_keep[dots_class == 1, 0],
        color=color_unlabel if not white else "w",
        marker="s",
        s=s,
        alpha=alpha,
        linewidths=linewidths,
    )

    dots_rotated = (
        np.dot(dots_keep - rotation_center, rotation_matrix) + rotation_center
    )

    plt.scatter(
        dots_rotated[dots_class == 0, 1],
        dots_rotated[dots_class == 0, 0],
        color=color_1 if not white else "w",
        marker="o",
        s=s,
        alpha=alpha,
        linewidths=linewidths,
    )

    plt.scatter(
        dots_rotated[dots_class == 1, 1],
        dots_rotated[dots_class == 1, 0],
        color=color_0 if not white else "w",
        marker="s",
        s=s,
        alpha=alpha,
        linewidths=linewidths,
    )

    # Hide axes
    plt.axis("off")

    return fig
fig = draw_S(figsize=(2, 2))

# Save the figure
plt.savefig(
    "skada_logo.svg",
    dpi=300,
)
plt.savefig(
    "skada_logo.pdf",
    dpi=300,
)
plot skada logo
fig = draw_S(figsize=(6, 2))

fontsize = 85
y_axis = 1.5
plt.text(
    10,
    y_axis,
    r"\bf\textsf{K}",
    usetex=True,
    fontsize=fontsize,
    color="black",
)
plt.text(
    17,
    y_axis,
    r"\bf\textsf{A}",
    usetex=True,
    fontsize=fontsize,
    color="black",
)
plt.text(
    23.5,
    y_axis,
    r"\bf\textsf{D}",
    usetex=True,
    fontsize=fontsize,
    color=color_1,
)
plt.text(
    30.5,
    y_axis,
    r"\bf\textsf{A}",
    usetex=True,
    fontsize=fontsize,
    color=color_0,
)

# plt.tight_layout()
# Save the figure
plt.savefig(
    "skada_logo_full.svg",
    dpi=300,
    bbox_inches="tight",
)
plt.savefig(
    "skada_logo_full.pdf",
    dpi=300,
    bbox_inches="tight",
)
plot skada logo
fig = draw_S(figsize=(6, 2), white=True)

fontsize = 85
y_axis = 1.5
plt.text(
    10,
    y_axis,
    r"\bf\textsf{K}",
    usetex=True,
    fontsize=fontsize,
    color="w",
)
plt.text(
    17,
    y_axis,
    r"\bf\textsf{A}",
    usetex=True,
    fontsize=fontsize,
    color="w",
)
plt.text(
    23.5,
    y_axis,
    r"\bf\textsf{D}",
    usetex=True,
    fontsize=fontsize,
    color="w",
)
plt.text(
    30.5,
    y_axis,
    r"\bf\textsf{A}",
    usetex=True,
    fontsize=fontsize,
    color="w",
)


# Save the figure
plt.savefig("skada_logo_full_white.svg", transparent=True)
plt.savefig("skada_logo_full_white.pdf", transparent=True)
plot skada logo

Total running time of the script: (0 minutes 1.367 seconds)

Gallery generated by Sphinx-Gallery