skada.MMDLSConSMappingAdapter
- skada.MMDLSConSMappingAdapter(gamma, reg_k=1e-10, reg_m=1e-10, tol=1e-05, max_iter=100)[source]
Location-Scale mapping minimizing the MMD with a Gaussian kernel.
MMDLSConSMapping finds a linear transformation that minimizes the Maximum Mean Discrepancy (MMD) between the source and target domains, such that $X^t = W(y^s) \odot X^s + B(y^s)$, where $W(y^s)$ and $B(y^s)$ are the scaling and bias of the linear transformation, respectively.
See Section 4 of [21] for details.
- Parameters:
- gammafloat
Parameter for the Gaussian kernel.
- reg_kfloat, default=1e-10
Regularization parameter for the labels kernel matrix.
- reg_mfloat, default=1e-10
Regularization parameter for the mapping parameters.
- tolfloat, default=1e-5
Tolerance for the stopping criterion in the optimization.
- max_iterint, default=100
Number of maximum iteration before stopping the optimization.
- Attributes:
- `W_`array-like, shape (n_samples, n_features)
The scaling matrix.
- `B_`array-like, shape (n_samples, n_features)
The bias matrix.
- `G_`array-like, shape (n_classes, n_features) or (n_samples, n_features)
The learned kernel scaling matrix.
- `H_`array-like, shape (n_classes, n_features) or (n_samples, n_features)
The learned kernel bias matrix.
- `X_source_`array-like, shape (n_samples, n_features)
The source data.
References
[21]Kun Zhang et. al. Domain Adaptation under Target and Conditional Shift In ICML, 2013.