skada.TransferComponentAnalysisAdapter
- skada.TransferComponentAnalysisAdapter(kernel='rbf', n_components=None, mu=0.1)[source]
Transfer Component Analysis.
See [9] for details.
- Parameters:
- kernelkernel object, default='rbf'
The kernel computed between data.
- n_componentsint, default=None
The numbers of components to learn with PCA. Should be less or equal to the number of samples of the source and target data.
- mufloat, default=0.1
The parameter of the regularization in the optimization problem.
- Attributes:
- `X_source_`array
Source data used for the optimization problem.
- `X_target_`array
Target data used for the optimization problem.
- `K_`array
Kernel distance between the data (source and target).
- `eigvects_`array
Highest n_components eigenvectors of the solution of the optimization problem used to project in the new subspace.
References
[9]Sinno Jialin Pan et. al. Domain Adaptation via Transfer Component Analysis. In IEEE Transactions on Neural Networks, 2011.