skada.datasets.make_shifted_datasets

skada.datasets.make_shifted_datasets(n_samples_source=100, n_samples_target=100, shift='covariate_shift', noise=None, label='binary', ratio=0.9, mean=1, sigma=0.7, gamma=2, mu_regression=None, sigma_regression=None, regression_scaling_constant=27, center=(0, 2), center_cov_shift=(0, 2), standardize=False, random_state=None, return_X_y=True, return_dataset=False)[source]

Generate source and shift target.

Parameters:
n_samples_sourceint, default=100

It is the total number of points among one source clusters. At the end 8*n_samples points.

n_samples_targetint, default=100

It is the total number of points among one target clusters. At the end 8*n_samples points.

shifttuple, default='covariate_shift'

Choose the nature of the shift. If 'covariate_shift', use covariate shift. If 'target_shift', use target shift. If 'concept_drift', use concept drift. If 'subspace', a subspace where the classes are separable independently of the domains exists. See detailed description of each shift in [1].

noisefloat or array_like, default=None

If float, standard deviation of Gaussian noise added to the data. If array-like, each element of the sequence indicate standard deviation of Gaussian noise added to the source and target data.

labelstr, default='binary'

If 'binary, generates binary class labels. If 'multiclass', generates multiclass labels. If 'regression', generates regression's y-values.

ratiofloat, default=0.9

Ratio of the number of data in class 1 selected in the target shift and the sample_selection bias

meanfloat, default=1

value of the translation in the concept drift.

sigmafloat, default=0.7

multiplicative value of the concept drift.

mu_regressionnp.array|float, default=None

Will only be used if label=='regression' should be 2x1 matrix when shift != 'subspace' should be a scalar when shift == 'subspace'

sigma_regressionnp.array|float, default=None

Will only be used if label=='regression' should be a 2x2 matrix when shift != 'subspace' should be a scalar when shift == 'subspace'

regression_scaling_constant: float, default=27

Constant by which we multiply the y-value when label=='regression'

gammafloat, default=2

Parameter of the RBF kernel.

centerarray-like of shape (1, 2), default=((0, 2))

Center of the distribution.

center_cov_shiftarray-like of shape (1, 2), default=((0, 2))

Center of the covariate-shift.

standardizebool, default=False

If True, the data is standardized. The standard score of a sample x is calculated as: z = (x - u) / s where u is the mean and s is the standard deviation of the data.

random_stateint, RandomState instance or None, default=None

Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls.

return_X_yboolean, optional (default=True)

Returns source and target dataset as a pair of (X, y) tuples (for the source and the target respectively). Otherwise returns tuple of (X, y, sample_domain) where sample_domain is a categorical label for the domain where sample is taken.

return_datasetboolean, optional (default=False)

When set to True, the function returns DomainAwareDataset object.

Returns:
(X, y, sample_domain)tuple if return_X_y=True

Tuple of (data, target, sample_domain), see the description below.

dataBunch

Dictionary-like object, with the following attributes.

X: ndarray

Samples from all sources and all targets given.

yndarray

Labels from all sources and all targets.

sample_domainndarray

The integer label for domain the sample was taken from. By convention, source domains have non-negative labels, and target domain label is always < 0.

domain_namesdict

The names of domains and associated domain labels.

datasetDomainAwareDataset

Dataset object.

References

[1]

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodriguez, R., Chawla, N. V., and Herrera, F. (2012). A unifying view on dataset shift in classification. Pattern recognition, 45(1):521-530.

Examples using skada.datasets.make_shifted_datasets

How to use SKADA

How to use SKADA

Comparison of DA classification methods

Comparison of DA classification methods

Plot dataset source domain and shifted target domain

Plot dataset source domain and shifted target domain

Plot dataset source domain and shifted target domain

Plot dataset source domain and shifted target domain

Multi-domain Linear Monge Alignment

Multi-domain Linear Monge Alignment

JDOT Regressor and Classifier examples

JDOT Regressor and Classifier examples

Subspace method example on subspace shift dataset

Subspace method example on subspace shift dataset

Reweighting method example on covariate shift dataset

Reweighting method example on covariate shift dataset

Label Propagation methods

Label Propagation methods

Optimal Transport Domain Adaptation (OTDA)

Optimal Transport Domain Adaptation (OTDA)

Using GridSearchCV with skada

Using GridSearchCV with skada

Using cross_val_score with skada

Using cross_val_score with skada

Visualizing cross-validation behavior in skada

Visualizing cross-validation behavior in skada