skada.metrics.ImportanceWeightedScorer

class skada.metrics.ImportanceWeightedScorer(weight_estimator=None, scoring=None, greater_is_better=True, kwargs=None)[source]

Score based on source data using sample weight.

See [17] for details.

Parameters:
weight_estimatorestimator object, optional

The estimator to use to estimate the densities of source and target observations. If None, a KernelDensity estimator is with default parameters used.

scoringstr or callable, default=None

A string (see model evaluation documentation) or a scorer callable object / function with signature scorer(estimator, X, y). If None, the provided estimator object's score method is used.

greater_is_betterbool, default=True

Whether scorer is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the scorer.

Attributes:
weight_estimator_source_object

The estimator object fitted on the source data.

weight_estimator_target_object

The estimator object fitted on the target data.

References

[17]

Masashi Sugiyama et al. Covariate Shift Adaptation by Importance Weighted Cross Validation. Journal of Machine Learning Research, 2007.

Examples using skada.metrics.ImportanceWeightedScorer

Using GridSearchCV with skada

Using GridSearchCV with skada