skada.metrics.PredictionEntropyScorer

class skada.metrics.PredictionEntropyScorer(greater_is_better=False, reduction='mean', kwargs=None)[source]

Score based on the entropy of predictions on unsupervised dataset.

See [18] for details.

Parameters:
greater_is_betterbool, default=False

Whether scorer is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the scorer.

reduction: str, default='mean'

Specifies the reduction to apply to the entropy values. Must be one of ['none', 'mean', 'sum']. If 'none', the entropy values for each sample are returned ([1]_ method). If 'mean', the mean of the entropy values is returned. If 'sum', the sum of the entropy values is returned.

Returns:
entropyfloat or ndarray of floats

If reduction is 'none', then ndarray of shape (n_samples,). Otherwise float.

References

[18]

Pietro Morerio et al. Minimal-Entropy correlation alignment for unsupervised deep domain adaptation. ICLR, 2018.

Examples using skada.metrics.PredictionEntropyScorer

How to use SKADA

How to use SKADA

Using GridSearchCV with skada

Using GridSearchCV with skada