skada.deep.MCC
- skada.deep.MCC(module, layer_name, reg=1, T=1, base_criterion=None, **kwargs)[source]
See [33].
- Parameters:
- moduletorch module (class or instance)
A PyTorch
Module
.- layer_namestr
The name of the module's layer whose outputs are collected during the training for the adaptation.
- regfloat, default=1
Regularization parameter for DA loss.
- Tfloat, default=1
Temperature parameter for the scaling.
- base_criteriontorch criterion (class)
The base criterion used to compute the loss with source labels. If None, the default is torch.nn.CrossEntropyLoss.
References
[33]Ying Jin, Ximei Wang, Mingsheng Long, Jianmin Wang. Minimum Class Confusion for Versatile Domain Adaptation. In ECCV, 2020.