skada.DASVMClassifier

skada.DASVMClassifier(base_estimator=None, k=3, max_iter=1000, save_estimators=False, save_indices=False, **kwargs)[source]

DASVM Estimator:

Parameters:
base_estimatorBaseEstimator

The estimator that will be used in the algorithm, It is a SVC by default, but can use any classifier equipped with a decision_function method

k: int>0

The number of points per classes that will be discarded/added at each steps of the algorithm

max_iterint

The maximal number of iteration of the algorithm when using fit

save_estimatorsBool

True if this object should remembers all the fitted estimators

save_indicesBool
True if this object should remembers all the values of

index_source_deleted and index_target_added

References

[11]

Bruzzone, L., & Marconcini, M. 'Domain adaptation problems: A DASVM classification technique and a circular validation strategy.' IEEE transactions on pattern analysis and machine intelligence, (2009).

Examples using skada.DASVMClassifier

DASVM classifier example

DASVM classifier example