skada.metrics.CircularValidation
- class skada.metrics.CircularValidation(source_scorer=<function balanced_accuracy_score>, greater_is_better=True)[source]
Score based on a circular validation strategy.
This scorer retrain the estimator, with the exact same parameters, on the predicted target domain samples. Then, the retrained estimator is used to predict the source domain labels. The score is then computed using the source_scorer between the true source labels and the predicted source labels.
See [11] for details.
- Parameters:
- source_scorercallable, default = sklearn.metrics.balanced_accuracy_score
Scorer used on the source domain samples. It should be a callable of the form source_scorer(y, y_pred).
- greater_is_betterbool, default=False
Whether scorer is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the scorer.
References
[11]Bruzzone, L., & Marconcini, M. 'Domain adaptation problems: A DASVM classification technique and a circular validation strategy.' IEEE transactions on pattern analysis and machine intelligence, (2009).
- set_score_request(*, sample_domain: bool | None | str = '$UNCHANGED$') CircularValidation
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter inscore
.
- Returns:
- selfobject
The updated object.