skada.metrics.ImportanceWeightedScorer
- class skada.metrics.ImportanceWeightedScorer(weight_estimator=None, scoring=None, greater_is_better=True)[source]
Score based on source data using sample weight.
See [17] for details.
- Parameters:
- weight_estimatorestimator object, optional
The estimator to use to estimate the densities of source and target observations. If None, a KernelDensity estimator is with default parameters used.
- scoringstr or callable, default=None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
. If None, the provided estimator object's score method is used.- greater_is_betterbool, default=True
Whether scorer is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the scorer.
References
[17]Masashi Sugiyama et al. Covariate Shift Adaptation by Importance Weighted Cross Validation. Journal of Machine Learning Research, 2007.
- Attributes:
- weight_estimator_source_object
The estimator object fitted on the source data.
- weight_estimator_target_object
The estimator object fitted on the target data.
- set_score_request(*, sample_domain: bool | None | str = '$UNCHANGED$') ImportanceWeightedScorer
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter inscore
.
- Returns:
- selfobject
The updated object.