skada.metrics.SupervisedScorer
- class skada.metrics.SupervisedScorer(scoring=None, greater_is_better=True)[source]
Compute score on supervised dataset.
- Parameters:
- scoringstr or callable, default=None
A string (see model evaluation documentation) or a scorer callable object / function with signature
scorer(estimator, X, y)
. If None, the provided estimator object's score method is used.- greater_is_betterbool, default=True
Whether scorer is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the scorer.
- set_score_request(*, sample_domain: bool | None | str = '$UNCHANGED$', target_labels: bool | None | str = '$UNCHANGED$') SupervisedScorer
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter inscore
.- target_labelsstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
target_labels
parameter inscore
.
- Returns:
- selfobject
The updated object.
Examples using skada.metrics.SupervisedScorer
Using cross_val_score with skada