skada.DiscriminatorReweightAdapter
- class skada.DiscriminatorReweightAdapter(domain_classifier=None)[source]
Gaussian approximation re-weighting method.
See [1] for details.
- Parameters:
- domain_classifiersklearn classifier, optional
Classifier used to predict the domains. If None, a LogisticRegression is used.
References
[1]Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. In Journal of Statistical Planning and Inference, 2000.
- Attributes:
- `domain_classifier_`object
The classifier object fitted on the source and target data.
- fit(X, y=None, sample_domain=None)[source]
Fit adaptation parameters.
- Parameters:
- Xarray-like, shape (n_samples, n_features)
The source data.
- yarray-like, shape (n_samples,)
The source labels.
- sample_domainarray-like, shape (n_samples,)
The domain labels (same as sample_domain).
- Returns:
- selfobject
Returns self.
- set_fit_request(*, sample_domain: bool | None | str = '$UNCHANGED$') DiscriminatorReweightAdapter
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_transform_request(*, allow_source: bool | None | str = '$UNCHANGED$', sample_domain: bool | None | str = '$UNCHANGED$') DiscriminatorReweightAdapter
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- allow_sourcestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
allow_source
parameter intransform
.- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter intransform
.
- Returns:
- selfobject
The updated object.