skada.KMMReweightAdapter
- class skada.KMMReweightAdapter(kernel='rbf', gamma=None, degree=3, coef0=1, B=1000.0, eps=None, tol=1e-06, max_iter=1000, smooth_weights=False, solver='frank-wolfe')[source]
Kernel Mean Matching (KMMReweight).
The idea of KMMReweight is to find an importance estimate w(x) such that the Maximum Mean Discrepancy (MMD) divergence between the target input density p_target(x) and the reweighted source input density w(x)p_source(x) is minimized.
See [23] for details.
- Parameters:
- kernelstr, default="rbf"
Kernel
- gammafloat, None
Parameters for the kernels.
- degreeint, 3
Parameters for the kernels.
- coef0float, default
Parameters for the kernels.
- Bfloat, default=1000.
Weight upper bound.
- epsfloat, default=None
KMMReweight tolerance parameter. If None, eps is set to (sqrt(n_samples_source) - 1) / sqrt(n_samples_source).
- tolfloat, default=1e-6
Tolerance for the stopping criterion in the optimization.
- max_iterint, default=100
Number of maximum iteration before stopping the optimization.
- smooth_weightsbool, default=False
If True, the weights are "smoothed" using the kernel function.
- solverstring, default='frank-wolfe'
Available solvers : ['frank-wolfe', 'scipy'].
- Attributes:
- `source_weights_`array-like, shape (n_samples,)
The learned source weights.
- `X_source_`array-like, shape (n_samples, n_features)
The source data.
References
[23]J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf and A. J. Smola. 'Correcting sample selection bias by unlabeled data.' In NIPS, 2007.
- fit(X, y=None, *, sample_domain=None)[source]
Fit adaptation parameters.
- Parameters:
- Xarray-like, shape (n_samples, n_features)
The source data.
- yarray-like, shape (n_samples,)
The source labels.
- sample_domainarray-like, shape (n_samples,)
The domain labels (same as sample_domain).
- Returns:
- selfobject
Returns self.
- set_fit_request(*, sample_domain: bool | None | str = '$UNCHANGED$') KMMReweightAdapter
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter infit
.
- Returns:
- selfobject
The updated object.
- set_transform_request(*, allow_source: bool | None | str = '$UNCHANGED$', sample_domain: bool | None | str = '$UNCHANGED$') KMMReweightAdapter
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- allow_sourcestr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
allow_source
parameter intransform
.- sample_domainstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_domain
parameter intransform
.
- Returns:
- selfobject
The updated object.
Examples using skada.KMMReweightAdapter
Reweighting method example on covariate shift dataset