skada.MMDTarSReweight

skada.MMDTarSReweight(base_estimator=None, gamma=1.0, reg=1e-10, tol=1e-06, max_iter=1000)[source]

Target shift reweighting using MMD.

See Section 3 of [21] for details.

Parameters:
base_estimatorsklearn estimator, default=None

Estimator used for fitting and prediction

gammafloat or array like

Parameters for the kernels.

regfloat, default=1e-10

Regularization parameter for the labels kernel matrix.

tolfloat, default=1e-6

Tolerance for the stopping criterion in the optimization.

max_iterint, default=1000

Number of maximum iteration before stopping the optimization.

Returns:
pipelinesklearn pipeline

Pipeline containing the DensityReweight adapter and the base estimator.

References

[21]

Kun Zhang et. al. Domain Adaptation under Target and Conditional Shift In ICML, 2013.

Examples using skada.MMDTarSReweight

Comparison of DA classification methods

Comparison of DA classification methods