skada.MMDTarSReweight
- skada.MMDTarSReweight(base_estimator=None, gamma=1.0, reg=1e-10, tol=1e-06, max_iter=1000)[source]
Target shift reweighting using MMD.
See Section 3 of [21] for details.
- Parameters:
- base_estimatorsklearn estimator, default=None
Estimator used for fitting and prediction
- gammafloat or array like
Parameters for the kernels.
- regfloat, default=1e-10
Regularization parameter for the labels kernel matrix.
- tolfloat, default=1e-6
Tolerance for the stopping criterion in the optimization.
- max_iterint, default=1000
Number of maximum iteration before stopping the optimization.
- Returns:
- pipelinesklearn pipeline
Pipeline containing the DensityReweight adapter and the base estimator.
References
[21]Kun Zhang et. al. Domain Adaptation under Target and Conditional Shift In ICML, 2013.
Examples using skada.MMDTarSReweight
Comparison of DA classification methods
Comparison of DA classification methods