skada.SubspaceAlignment
- skada.SubspaceAlignment(base_estimator=None, n_components=None, random_state=None)[source]
Domain Adaptation Using Subspace Alignment.
See [8] for details.
- Parameters:
- base_estimatorobject, default=None
estimator used for fitting and prediction
- n_componentsint, default=None
The numbers of components to learn with PCA. If n_components is not set all components are kept:
n_components == min(n_samples, n_features)
- random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls.
- Returns:
- pipelinePipeline
A pipeline containing a SubspaceAlignmentAdapter.
References
[8]Basura Fernando et. al. Unsupervised Visual Domain Adaptation Using Subspace Alignment. In IEEE International Conference on Computer Vision, 2013.
Examples using skada.SubspaceAlignment
Comparison of DA classification methods
Comparison of DA classification methods
Subspace method example on subspace shift dataset
Subspace method example on subspace shift dataset