skada.SubspaceAlignment

skada.SubspaceAlignment(base_estimator=None, n_components=None, random_state=None)[source]

Domain Adaptation Using Subspace Alignment.

See [8] for details.

Parameters:
base_estimatorobject, default=None

estimator used for fitting and prediction

n_componentsint, default=None

The numbers of components to learn with PCA. If n_components is not set all components are kept:

n_components == min(n_samples, n_features)
random_stateint, RandomState instance or None, default=None

Determines random number generation for dataset creation. Pass an int for reproducible output across multiple function calls.

Returns:
pipelinePipeline

A pipeline containing a SubspaceAlignmentAdapter.

References

[8]

Basura Fernando et. al. Unsupervised Visual Domain Adaptation Using Subspace Alignment. In IEEE International Conference on Computer Vision, 2013.

Examples using skada.SubspaceAlignment

Comparison of DA classification methods

Comparison of DA classification methods

Subspace method example on subspace shift dataset

Subspace method example on subspace shift dataset