skada.TransferJointMatching
- skada.TransferJointMatching(base_estimator=None, n_components=None, tradeoff=0.01, kernel='rbf', max_iter=100, tol=0.01)[source]
- Parameters:
- base_estimatorobject, default=None
estimator used for fitting and prediction
- n_componentsint, default=None
The numbers of components to learn with PCA. Should be less or equal to the number of samples of the source and target data.
- tradeofffloat, default=1e-2
The tradeoff constant for the TJM algorithm. It serves to trade off feature matching and instance reweighting.
- max_iterint>0, default=100
The maximal number of iteration before stopping when fitting.
- kernelkernel object, default='rbf'
The kernel computed between data.
- tol
- Returns:
- pipelinePipeline
A pipeline containing a TransferJointMatchingAdapter.
References
[26][Long et al., 2014] Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. (2014). Transfer joint matching for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1410–1417
Examples using skada.TransferJointMatching
Subspace method example on subspace shift dataset
Subspace method example on subspace shift dataset