skada.TransferComponentAnalysis
- skada.TransferComponentAnalysis(base_estimator=None, kernel='rbf', n_components=None, mu=0.1)[source]
Domain Adaptation Using Transfer Component Analysis.
See [9] for details.
- Parameters:
- base_estimatorobject, default=None
estimator used for fitting and prediction
- kernelkernel object, default='rbf'
The kernel computed between data.
- n_componentsint, default=None
The numbers of components to learn with PCA. Should be less or equal to the number of samples of the source and target data.
- mufloat, default=0.1
The parameter of the regularization in the optimization problem.
- Returns:
- pipelinePipeline
A pipeline containing a TransferComponentAnalysisAdapter.
References
[9]Sinno Jialin Pan et. al. Domain Adaptation via Transfer Component Analysis. In IEEE Transactions on Neural Networks, 2011.
Examples using skada.TransferComponentAnalysis
Comparison of DA classification methods
Comparison of DA classification methods
Subspace method example on subspace shift dataset
Subspace method example on subspace shift dataset