skada.TransferComponentAnalysis

skada.TransferComponentAnalysis(base_estimator=None, kernel='rbf', n_components=None, mu=0.1)[source]

Domain Adaptation Using Transfer Component Analysis.

See [9] for details.

Parameters:
base_estimatorobject, default=None

estimator used for fitting and prediction

kernelkernel object, default='rbf'

The kernel computed between data.

n_componentsint, default=None

The numbers of components to learn with PCA. Should be less or equal to the number of samples of the source and target data.

mufloat, default=0.1

The parameter of the regularization in the optimization problem.

Returns:
pipelinePipeline

A pipeline containing a TransferComponentAnalysisAdapter.

References

[9]

Sinno Jialin Pan et. al. Domain Adaptation via Transfer Component Analysis. In IEEE Transactions on Neural Networks, 2011.

Examples using skada.TransferComponentAnalysis

Comparison of DA classification methods

Comparison of DA classification methods

Subspace method example on subspace shift dataset

Subspace method example on subspace shift dataset