skada.ClassRegularizerOTMappingAdapter

skada.ClassRegularizerOTMappingAdapter(reg_e=1.0, reg_cl=0.1, norm='lpl1', metric='sqeuclidean', max_iter=10, max_inner_iter=200, tol=1e-08)[source]

Domain Adaptation Using Optimal Transport.

See [6] for details.

Parameters:
reg_efloat, default=1

Entropic regularization parameter.

reg_clfloat, default=0.1

Class regularization parameter.

normstr, default="lpl1"

Norm use for the regularizer of the class labels. If "lpl1", use the lp l1 norm. If "l1l2", use the l1 l2 norm.

metricstr, optional (default="sqeuclidean")

The ground metric for the Wasserstein problem

max_iterint, float, optional (default=10)

The minimum number of iteration before stopping the optimization algorithm if it has not converged

max_inner_iterint, float, optional (default=200)

The number of iteration in the inner loop

tolfloat, optional (default=10e-9)

Stop threshold on error (inner sinkhorn solver) (>0)

References

[6]

N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence

Attributes:
ot_transport_object

The OT object based on Sinkhorn Algorithm + class regularization fitted on the source and target data.

Examples using skada.ClassRegularizerOTMappingAdapter

Optimal Transport Domain Adaptation (OTDA)

Optimal Transport Domain Adaptation (OTDA)