skada.ClassRegularizerOTMappingAdapter

skada.ClassRegularizerOTMappingAdapter(reg_e=1.0, reg_cl=0.1, norm='lpl1', metric='sqeuclidean', max_iter=10, max_inner_iter=200, tol=1e-08)[source]

Domain Adaptation Using Optimal Transport.

See [6] for details.

Parameters:
reg_efloat, default=1

Entropic regularization parameter.

reg_clfloat, default=0.1

Class regularization parameter.

normstr, default="lpl1"

Norm use for the regularizer of the class labels. If "lpl1", use the lp l1 norm. If "l1l2", use the l1 l2 norm.

metricstr, optional (default="sqeuclidean")

The ground metric for the Wasserstein problem

max_iterint, float, optional (default=10)

The minimum number of iteration before stopping the optimization algorithm if it has not converged

max_inner_iterint, float, optional (default=200)

The number of iteration in the inner loop

tolfloat, optional (default=10e-9)

Stop threshold on error (inner sinkhorn solver) (>0)

Attributes:
ot_transport_object

The OT object based on Sinkhorn Algorithm + class regularization fitted on the source and target data.

References

[6]

N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence

Examples using skada.ClassRegularizerOTMappingAdapter

Optimal Transport Domain Adaptation (OTDA)

Optimal Transport Domain Adaptation (OTDA)