skada.OTMapping
- skada.OTMapping(base_estimator=None, metric='sqeuclidean', norm=None, max_iter=100000)[source]
OTmapping pipeline with adapter and estimator.
See [6] for details.
- Parameters:
- base_estimatorobject, optional (default=None)
The base estimator to fit on the target dataset.
- metricstr, optional (default="sqeuclidean")
The ground metric for the Wasserstein problem
- norm{'median', 'max', 'log', 'loglog'} (default=None)
If given, normalize the ground metric to avoid numerical errors that can occur with large metric values.
- max_iterint, optional (default=100_000)
The maximum number of iterations before stopping OT algorithm if it has not converged.
- Returns:
- pipelinePipeline
Pipeline containing OTMapping adapter and base estimator.
References
[6]N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence
Examples using skada.OTMapping
Comparison of DA classification methods
Comparison of DA classification methods
Optimal Transport Domain Adaptation (OTDA)
Optimal Transport Domain Adaptation (OTDA)