skada.OTMapping

skada.OTMapping(base_estimator=None, metric='sqeuclidean', norm=None, max_iter=100000)[source]

OTmapping pipeline with adapter and estimator.

See [6] for details.

Parameters:
base_estimatorobject, optional (default=None)

The base estimator to fit on the target dataset.

metricstr, optional (default="sqeuclidean")

The ground metric for the Wasserstein problem

norm{'median', 'max', 'log', 'loglog'} (default=None)

If given, normalize the ground metric to avoid numerical errors that can occur with large metric values.

max_iterint, optional (default=100_000)

The maximum number of iterations before stopping OT algorithm if it has not converged.

Returns:
pipelinePipeline

Pipeline containing OTMapping adapter and base estimator.

References

[6]

N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence

Examples using skada.OTMapping

Comparison of DA classification methods

Comparison of DA classification methods

Optimal Transport Domain Adaptation (OTDA)

Optimal Transport Domain Adaptation (OTDA)