skada.TransferSubspaceLearning

skada.TransferSubspaceLearning(base_estimator=None, n_components=None, base_method='flda', length_scale=2, mu=0.1, reg=0.01, max_iter=100, tol=0.01, verbose=False)[source]

Domain Adaptation Using Transfer Subspace Learning.

Parameters:
n_componentsint, default=None

The numbers of components to learn. Should be less or equal to the number of samples of the source and target data.

base_methodstr, default='flda'

The method used to learn the subspace. Possible values are 'pca', 'flda', and 'lpp'.

length_scalefloat, default=2

The length scale of the rbf kernel used in 'lpp' method.

mufloat, default=0.1

The parameter of the regularization in the optimization problem.

regfloat, default=0.01

The regularization parameter of the covariance estimator. Possible values:

  • None: no shrinkage.

  • float between 0 and 1: fixed shrinkage parameter.

max_iterint>0, default=100

The maximal number of iteration before stopping when fitting.

tolfloat, default=0.01

The threshold for the differences between losses on two iteration before the algorithm stops

verbosebool, default=False

If True, print the final gradient norm.

Returns:
pipelinePipeline

A pipeline containing a TransferSubspaceLearning estimator.

References

[27]

[Si et al., 2010] Si, S., Tao, D. and Geng, B. Bregman Divergence-Based Regularization for Transfer Subspace Learning. In IEEE Transactions on Knowledge and Data Engineering. pages 929-942

Examples using skada.TransferSubspaceLearning

Comparison of DA classification methods

Comparison of DA classification methods

Subspace method example on subspace shift dataset

Subspace method example on subspace shift dataset