skada.ClassRegularizerOTMapping

skada.ClassRegularizerOTMapping(base_estimator=SVC(), metric='sqeuclidean', norm='lpl1', max_iter=10, max_inner_iter=200, reg_e=1.0, reg_cl=0.1, tol=1e-08)[source]

ClassRegularizedOTMapping pipeline with adapter and estimator.

see [6] for details.

Parameters:
base_estimatorobject, optional (default=SVC(kernel="rbf"))

The base estimator to fit on the target dataset.

reg_efloat, default=1

Entropic regularization parameter.

reg_clfloat, default=0.1

Class regularization parameter.

normstr, default="lpl1"

Norm use for the regularizer of the class labels. If "lpl1", use the lp l1 norm. If "l1l2", use the l1 l2 norm.

metricstr, optional (default="sqeuclidean")

The ground metric for the Wasserstein problem

max_iterint, float, optional (default=10)

The minimum number of iteration before stopping the optimization algorithm if it has not converged

max_inner_iterint, float, optional (default=200)

The number of iteration in the inner loop

tolfloat, optional (default=10e-9)

Stop threshold on error (inner sinkhorn solver) (>0)

Returns:
pipelinePipeline

Pipeline containing ClassRegularizerOTMapping adapter and base estimator.

References

[6]

N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence

Examples using skada.ClassRegularizerOTMapping

Comparison of DA classification methods

Comparison of DA classification methods