skada.EntropicOTMapping

skada.EntropicOTMapping(base_estimator=None, metric='sqeuclidean', norm=None, max_iter=1000, reg_e=1.0, tol=1e-08)[source]

EntropicOTMapping pipeline with adapter and estimator.

see [6] for details.

Parameters:
base_estimatorobject, optional (default=None)

The base estimator to fit on the target dataset.

reg_efloat, default=1

Entropic regularization parameter.

metricstr, optional (default="sqeuclidean")

The ground metric for the Wasserstein problem.

norm{'median', 'max', 'log', 'loglog'} (default=None)

If given, normalize the ground metric to avoid numerical errors that can occur with large metric values.

max_iterint, float, optional (default=1000)

The minimum number of iteration before stopping the optimization of the Sinkhorn algorithm if it has not converged

tolfloat, optional (default=10e-9)

The precision required to stop the optimization of the Sinkhorn algorithm.

Returns:
pipelinePipeline

Pipeline containing EntropicOTMapping adapter and base estimator.

References

[6]

N. Courty, R. Flamary, D. Tuia and A. Rakotomamonjy, Optimal Transport for Domain Adaptation, in IEEE Transactions on Pattern Analysis and Machine Intelligence

Examples using skada.EntropicOTMapping

Comparison of DA classification methods

Comparison of DA classification methods

Using GridSearchCV with skada

Using GridSearchCV with skada

Using cross_val_score with skada

Using cross_val_score with skada